Department of Health | HIV, STD, and TB Services | Congenital Syphilis



antitubercular antibiotics :: Article Creator

New Antibiotics Could Tackle Drug-resistant Tuberculosis Bacteria

Infection by Mycobacterium tuberculosis kills 1.5 million people worldwide every year. Antibiotics to treat TB exist, but in recent years, multi-drug resistant (MDR), extensively drug-resistant (XDR) and totally drug-resistant (TDR) strains of the bacterium have developed. According to a new study publishing May 31st in the open-access journal PLOS Biology by Ho-Yeon Song of Soonchunhyang University in the Republic of Korea and colleagues, a new class of antibiotics is highly effective against drug-resistant tuberculosis. If validated in clinical trials, the new drug class would represent a major advance in the treatment of tuberculosis.

To develop new drug candidates, the authors first screened a wide variety of plant extracts and found one with particularly promising antibacterial activity. Deoxypergularinine (DPG) is purified from the root of Cynanchum atratum, a flowering plant used in traditional Chinese medicine. The researchers proceeded to make and test multiple analogues of DPG for their ability to inhibit M. Tuberculosis without harming the cells it infected. They identified a class of derivatives (collectively named PPs, based on the presence of phenanthrene and pyrrolidine groups within the structures) with high antitubercular effects and low toxicity.

For several derivatives, a standard measure of antibacterial effect, known as the minimum inhibitory concentration (MIC), was lower (i.E.: better) than for the current first-line TB drugs in XDR strain-infected cell culture. In a mouse model, 4 weeks of treatment with one derivative, called PP1S, significantly reduced the burden of TB infection compared to the control group. Neither PP1S nor a second derivative, PP2S, produced any clinical side effects in healthy rats after two weeks of high-dose treatment. No adverse effects were seen after four weeks of intermediate-dose therapy with PP2S.

One concern with antibiotic treatment is off-target killing of other bacteria, including those in the gut. After one week of treatment with PP2S, no significant changes were seen in the mouse gut microbiome, versus multiple changes observed after treatment with other TB drugs. The extremely selective effect on M. Tuberculosis is likely due to the target of the PPs, which the authors showed was probably a gene called PE_PGRS57. This gene appears to be found in very few other species of bacteria, including multiple other Mycobacterium species.

Currently, treatment of MDR TB requires over a year of therapy with a cocktail of antibiotics, each with important side effects. "While further testing will be required, the low effective dose and high level of safety in these early tests indicate that these new drugs are likely to be important alternatives to the current regimen for treatment of tuberculosis," Song said.

Song adds, "A new class of PP derivatives is a Mycobacterium tuberculosis-targeted antimicrobial with microbiome-safe properties."


Trends In Discovery Of New Drugs For Tuberculosis Therapy

Lienhardt, C. Et al. Global tuberculosis control: lessons learnt and future prospects. Nat. Rev. Microbiol. 10, 407–416 (2012).

Article  CAS  PubMed  Google Scholar 

Paulson, T. Epidemiology: a mortal foe. Nature 502, S2–S3 (2013).

Article  PubMed  Google Scholar 

Post, F. A. Et al. Multi-drug-resistant tuberculosis in HIV positive patients in Eastern Europe. J. Infect. 68, 259–263 (2013).

Article  PubMed  Google Scholar 

World Health Organization. WHO Global Tuberculosis Report 2013, http://www.Who.Int/tdr/news/2013/global-TB-report/en/ (2013).

Lienhardt, C. Et al. New drugs for the treatment of tuberculosis: needs, challenges, promise, and prospects for the future. J. Infect. Dis. 205, S241–S249 (2012).

Article  PubMed  Google Scholar 

Green, K. D. & Garneau-Tsodikova, S. Resistance in tuberculosis: what do we know and where can we go? Front. Microbiol. 4, 208 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Sotgiu, G., Spanevello, A. & Migliori, G. B. In vitro susceptibility testing and totally drug-resistant tuberculosis. Eur. Respir. J. 42, 292 (2013).

Article  PubMed  Google Scholar 

Udwadia, Z. F., Amale, R. A., Ajbani, K. K. & Rodrigues, C. Totally drug-resistant tuberculosis in India. Clin. Infect. Dis. 54, 579–581 (2012).

Article  PubMed  Google Scholar 

Velayati, A. A. Et al. Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest 136, 420–425 (2009).

Article  PubMed  Google Scholar 

Migliori, G. B. Et al. Totally drug-resistant and extremely drug-resistant tuberculosis: the same disease? Clin. Infect. Dis. 54, 1379–1380 (2012).

Article  CAS  PubMed  Google Scholar 

Riccardi, G., Pasca, M. R. & Buroni, S. Mycobacterium tuberculosis: drug resistance and future perspectives. Future Microbiol. 4, 597–614 (2009).

Article  CAS  PubMed  Google Scholar 

Vilchèze, C. & Jacobs, W. R. Jr. The mechanism of isoniazid killing: clarity through the scope of genetics. Annu. Rev. Microbiol. 61, 35–50 (2007).

Article  PubMed  Google Scholar 

Wang, L.-Q., Falany, C. N. & James, M. O. Triclosan as a substrate and inhibitor of 3′-phosphoadenosine 5′-phosphosulfate-sulfotransferase and UDP-glucuronosyl transferase in human liver fractions. Drug Metab. Dispos. 32, 1162–1169 (2004).

Article  CAS  PubMed  Google Scholar 

Freundlich, J. S. Et al. Triclosan derivatives: towards potent inhibitors of drug-sensitive and drug-resistant Mycobacterium tuberculosis. ChemMedChem 4, 241–248 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matviiuk, T. Et al. Synthesis of 3-heteryl substituted pyrrolidine-2,5-diones via catalytic Michael reaction and evaluation of their inhibitory activity against InhA and Mycobacterium tuberculosis. Eur. J. Med. Chem. 71, 46–52 (2014).

Article  CAS  PubMed  Google Scholar 

Hartkoorn, R. C. Et al. Towards a new tuberculosis drug: pyridomycin - nature's isoniazid. EMBO Mol. Med. 4, 1032–1042 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scorpio, A. Et al. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 41, 540–543 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi, W. Et al. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 333, 1630–1632 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saguy, M. Et al. Ribosomal protein S1 influences trans-translation in vitro and in vivo. Nucleic Acids Res. 35, 2368–2376 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y. Et al. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J. Antimicrob. Chemother. 52, 790–795 (2003).

Article  PubMed  Google Scholar 

McDermott, W. & Tompsett, R. Activation of pyrazinamide and nicotinamide in acidic environments in vitro. Am. Rev. Tuberc. 70, 748–754 (1954).

CAS  PubMed  Google Scholar 

McCune, R. M., Feldmann, F. M., Lambert, H. P. & McDermott, W. Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J. Exp. Med. 123, 445–468 (1966).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolucka, B. A. Biosynthesis of D-arabinose in mycobacteria—a novel bacterial pathway with implications for antimycobacterial therapy. FEBS J. 275, 2691–2711 (2008).

Article  CAS  PubMed  Google Scholar 

Telenti, A. Et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat. Med. 3, 567–570 (1997).

Article  CAS  PubMed  Google Scholar 

Telenti, A. Et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341, 647–650 (1993).

Article  CAS  PubMed  Google Scholar 

Sensi, P. History of the development of rifampin. Rev. Infect. Dis. 5, S402–S406 (1983).

Article  CAS  PubMed  Google Scholar 

Mukhopadhyay, J. Et al. The RNA polymerase "switch region" is a target for inhibitors. Cell 135, 295–307 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sensi, P. Approaches to the development of new antituberculosis drugs. Rev. Infect. Dis. 11, S467–S470 (1989).

Article  CAS  PubMed  Google Scholar 

North, E. J., Jackson, M. & Lee, R. E. New approaches to target the mycolic acid biosynthesis pathway for the development of tuberculosis therapeutics. Curr. Pharm. Des. 20, 4357–4378 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zumla, A., Nahid, P. & Cole, S. T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 12, 388–404 (2013).

Article  CAS  PubMed  Google Scholar 

Palomino, J. C. & Martin, A. Tuberculosis clinical trial update and the current anti-tuberculosis drug portfolio. Curr. Med. Chem. 20, 3785–3796 (2013).

Article  CAS  PubMed  Google Scholar 

Nunn, A., Phillips, P. P. & Abubakar, I. Treatment of pulmonary tuberculosis. Curr. Opin. Pulm. Med. 19, 273–279 (2013).

Article  PubMed  Google Scholar 

Mahajan, R. Bedaquiline: First FDA-approved tuberculosis drug in 40 years. Int. J. Appl. Basic Med. Res. 3, 1–2 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Andries, K. Et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223–227 (2005).

Article  CAS  PubMed  Google Scholar 

Chan, B., Khadem, T. M. & Brown, J. A review of tuberculosis: focus on bedaquiline. Am. J. Health Syst. Pharm. 70, 1984–1994 (2013).

Article  CAS  PubMed  Google Scholar 

Haagsma, A. C. Et al. Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob. Agents Chemother. 53, 1290–1292 (2009).

Article  CAS  PubMed  Google Scholar 

Chahine, E. B., Karaoui, L. R. & Mansour, H. Bedaquiline: a novel diarylquinoline for multidrug-resistant tuberculosis. Ann. Pharmacother. 48, 107–115 (2014).

Article  PubMed  Google Scholar 

Singh, R. Et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322, 1392–1395 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manjunatha, U., Boshoff, H. I. & Barry, C. E. The mechanism of action of PA-824: Novel insights from transcriptional profiling. Commun. Integr. Biol. 2, 215–218 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diacon, A. H. Et al. Early bactericidal activity and pharmacokinetics of PA-824 in smear-positive tuberculosis patients. Antimicrob. Agents Chemother. 54, 3402–3407 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gler, M. T. Et al. Delamanid for multidrug-resistant pulmonary tuberculosis. New Engl. J. Med. 366, 2151–2160 (2012).

Article  CAS  PubMed  Google Scholar 

Zhang, Q., Liu, Y., Tang, S., Sha, W. & Xiao, H. Clinical benefit of delamanid (OPC-67683) in the treatment of multidrug-resistant tuberculosis patients in China. Cell Biochem. Biophys. 67, 957–963 (2013).

Article  CAS  PubMed  Google Scholar 

Munsiff, S. S., Kambili, C. & Ahuja, S. D. Rifapentine for the treatment of pulmonary tuberculosis. Clin. Infect. Dis. 43, 1468–1475 (2006).

Article  CAS  PubMed  Google Scholar 

Chan, J. G., Bai, X. & Traini, D. An update on the use of rifapentine for tuberculosis therapy. Expert Opin. Drug Deliv. 11, 421–431 (2014).

Article  CAS  PubMed  Google Scholar 

Dooley, K. E. Et al. Safety and pharmacokinetics of escalating daily doses of the antituberculosis drug rifapentine in healthy volunteers. Clin. Pharmacol. Ther. 91, 881–888 (2012).

Article  CAS  PubMed  Google Scholar 

Tahlan, K. Et al. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 56, 1797–1809 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sacksteder, K. A., Protopopova, M., Barry, C. E. 3rd, Andriesm, K. & Nacy, C. A. Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action. Future Microbiol. 7, 823–837 (2012).

Article  CAS  PubMed  Google Scholar 

Owens, C. P. Et al. The Mycobacterium tuberculosis secreted protein Rv0203 transfers heme to membrane proteins MmpL3 and MmpL11. J. Biol. Chem. 288, 21714–21728 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grzegorzewicz, A. E. Et al. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat. Chem. Biol. 8, 334–341 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

La Rosa, V. Et al. MmpL3 is the cellular target of the antitubercular pyrrole derivative BM212. Antimicrob. Agents Chemother. 56, 324–331 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stanley, S. A. Et al. Identification of novel inhibitors of M. Tuberculosis growth using whole cell based high-throughput screening. ACS Chem. Biol. 7, 1377–1384 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lun, S. Et al. Indoleamides are active against drug-resistant Mycobacterium tuberculosis. Nat. Commun. 4, 2907 (2013).

Article  PubMed  Google Scholar 

Blair, J. M. & Piddock, L. J. Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update. Curr. Opin. Microbiol. 12, 512–519 (2009).

Article  CAS  PubMed  Google Scholar 

Poce, G. Et al. Improved BM212 MmpL3 inhibitor analogue shows efficacy in acute murine model of tuberculosis infection. PLoS ONE 8, e56980 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolucka, B. A. Biosynthesis of D-arabinose in mycobacteria - a novel bacterial pathway with implications for antimycobacterial therapy. FEBS J. 275, 2691–2711 (2008).

Article  CAS  PubMed  Google Scholar 

Riccardi, G. Et al. The DprE1 enzyme, one of the most vulnerable targets of Mycobacterium tuberculosis. Appl. Microbiol. Biotechnol. 97, 8841–8848 (2013).

Article  CAS  PubMed  Google Scholar 

Makarov, V. Et al. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 324, 801–804 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neres, J. Et al. Structural basis for benzothiazinone-mediated killing of Mycobacterium tuberculosis. Sci. Transl. Med. 4, 150ra121 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Pasca, M. R. Et al. Clinical isolates of Mycobacterium tuberculosis in four European hospitals are uniformly susceptible to benzothiazinones. Antimicrob. Agents Chemother. 54, 1616–1618 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lechartier, B., Hartkoorn, R. C. & Cole, S. T. In vitro combination studies of benzothiazinone lead compound BTZ043 against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 56, 5790–5793 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Makarov, V. Et al. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol. Med. 6, 372–383 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Christophe, T. Et al. High content screening identifies decaprenyl-phosphoribose 2' epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog. 5, e1000645 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Magnet, S. Et al. Leads for antitubercular compounds from kinase inhibitor library screens. Tuberculosis (Edinb) 90, 354–360 (2010).

Article  CAS  Google Scholar 

Wang, F. Et al. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proc. Natl Acad. Sci. USA 110, E2510–E2517 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shirude, P. S. Et al. Azaindoles: noncovalent DprE1 inhibitors from scaffold morphing efforts, kill Mycobacterium tuberculosis and are efficacious in vivo. J. Med. Chem. 56, 9701–9708 (2013).

Article  CAS  PubMed  Google Scholar 

Batt, S. M. Et al. Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc. Natl Acad. Sci. USA 109, 11354–11359 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orme, I. M. Vaccine development for tuberculosis: current progress. Drugs 73, 1015–1024 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 


How Do Antibiotics Work? What To Know As You Sift Through Information

Your browser is not supportedusatoday.Com

usatoday.Com wants to ensure the best experience for all of our readers, so we built our site to take advantage of the latest technology, making it faster and easier to use.

Unfortunately, your browser is not supported. Please download one of these browsers for the best experience on usatoday.Com






Comments

Popular posts from this blog

Manual on meat inspection for developing countries

Blogs, Releases Address Impact Of COVID-19 On AIDS, TB, Malaria, Food Security Responses, Other Issues Related To Pandemic - Kaiser Family Foundation

Compounds show promise in search for tuberculosis antibiotics - Science Daily