Facing TB in Houston



tuberculosis is a bacterial disease :: Article Creator

Tuberculosis Bacteria "Break The Rules" Of Bacterial Biology

Register for free to listen to this article

Thank you. Listen to this article using the player above. ✖

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

The rod-shaped tuberculosis (TB) bacterium, which the World Health Organization has once again ranked as the top infectious disease killer globally, is the first single-celled organism ever observed to maintain a consistent growth rate throughout its life cycle. These findings, reported by Tufts University School of Medicine researchers on November 15 in the journal Nature Microbiology, overturn core beliefs of bacterial cell biology and hint at why the deadly pathogen so readily outmaneuvers our immune system and antibiotics. 

"The most basic thing you can study in bacteria is how they grow and divide, yet our study reveals that the TB pathogen is playing by a completely different set of rules compared to easier-to-study model organisms," said Bree Aldridge, a professor of molecular biology and microbiology at the School of Medicine and a professor of biomedical engineering at the School of Engineering, as well as one of the paper's co-senior authors along with Ariel Amir of the Weizmann Institute of Science.  

TB bacteria are successful at surviving in humans because some parts of the infection can quickly evolve within their host, allowing these outliers to avoid detection or resist treatment. If someone has TB, it takes months of various antibiotics to be cured, and even then, this approach is only successful in 85% of patients. Aldridge and her colleagues hypothesize that gaps in our understanding of the basic biology behind this phenomenon have been holding back the development of more effective treatments.  

Getting answers, however, proved to be slow and meticulous work. Postdoctoral fellow Christin (Eun Seon) Chung at the School of Medicine, one of the paper's first authors, spent three years in a specialized facility equipped to handle high-risk pathogens observing the behavior of individual TB cells. Because TB bacteria double every ~24 hours (compared to 20 minutes for several model bacterial species), Aldridge's team needed to develop and deploy new microscopy methods to film the microbe over week-long periods. Chung analyzed the footage and tracked each TB bacterium and their progeny manually as they are also notoriously small and prone to move about, so automated analysis could not be used. 

Subscribe to Technology Networks' daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE These experiments showed that the TB bacterium doesn't follow expected patterns of cell growth. In other bacterial species, growth is exponential, which means cells grow slower when they are smaller. For TB bacteria, growth rates can be the same whether they are newly born (and small) or far along in their cell cycle and soon to divide.  

"This is the first reported organism that can do this," said Chung. "TB's behavior challenges fundamental bacterial biology as it's been thought that ribosomes—which are sites of protein synthesis in the cell—drive cell growth rates, but our work suggests that something else may be happening in TB bacteria that raises new questions about its growth control." 

In addition to reporting that there is extensive variation in growth behaviors among the individual bacterial cells, the team discovered another new growth behavior of TB bacteria: they can also begin growing from either end after being born. This was unexpected as related bacteria only start growing from the end opposite of where they pinched off their mother cell at division. 

Together, the observations reveal that TB microbes use alternative strategies to increase variability among their offspring, challenging previous assumptions based on faster-growing and more uniform model organisms. Aldridge says the study will help her lab and other research teams better understand and exploit these mechanisms for treatment purposes. 

"A lot of basic microbiology research is done in fast-growing model organisms, and while they're models for a reason, that doesn't make them representatives of other types of bacteria," said Aldridge. "There's an enormous diversity of life that we're not studying at the fundamental level and this work demonstrates why we need to study the pathogens themselves." 

Reference: Chung ES, Kar P, Kamkaew M, Amir A, Aldridge BB. Single-cell imaging of the Mycobacterium tuberculosis cell cycle reveals linear and heterogenous growth. Nat Microbiol. 2024. Doi: 10.1038/s41564-024-01846-z

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source. Our press release publishing policy can be accessed here.


New Study Redefines Tuberculosis Bacteria Growth

New study sheds light on the growth patterns of tuberculosis bacteria. The rod-shaped tuberculosis (TB) bacterium, ranked by the World Health Organization as the leading infectious disease killer worldwide, is the first single-celled organism observed to sustain a consistent growth rate throughout its life cycle. This discovery challenges long-held beliefs in bacterial cell biology and offers new insights into why this deadly pathogen is so adept at evading both our immune system and antibiotics. (1✔ ✔Trusted SourceSingle-cell imaging of the Mycobacterium tuberculosis cell cycle reveals linear and heterogenous growthGo to source) TB Pathogen Breaks the Rules "The most basic thing you can study in bacteria is how they grow and divide, yet our study reveals that the TB pathogen is playing by a completely different set of rules compared to easier-to-study model organisms," said Bree Aldridge, a professor of molecular biology and microbiology at the School of Medicine and a professor of biomedical engineering at the School of Engineering, as well as one of the paper's co-senior authors along with Ariel Amir of the Weizmann Institute of Science. '#Tuberculosis bacteria can evolve quickly within humans, making them difficult to eradicate. #TB #lunghealth' If someone has TB, it takes months of various antibiotics to be cured, and even then, this approach is only successful in 85% of patients. Aldridge and her colleagues hypothesize that gaps in our understanding of the basic biology behind this phenomenon have been holding back the development of more effective treatments.

Getting answers, however, proved to be slow and meticulous work. Postdoctoral fellow Christin (Eun Seon) Chung at the School of Medicine, one of the paper's first authors, spent three years in a specialized facility equipped to handle high-risk pathogens observing the behavior of individual TB cells. Because TB bacteria double every ~24 hours (compared to 20 minutes for several model bacterial species), Aldridge's team needed to develop and deploy new microscopy methods to film the microbe over week-long periods. Chung analyzed the footage and tracked each TB bacterium and their progeny manually as they are also notoriously small and prone to move about, so automated analysis could not be used.

These experiments showed that the TB bacterium doesn't follow expected patterns of cell growth. In other bacterial species, growth is exponential, which means cells grow slower when they are smaller. For TB bacteria, growth rates can be the same whether they are newly born (and small) or far along in their cell cycle and soon to divide.

"This is the first reported organism that can do this," said Chung. "TB's behavior challenges fundamental bacterial biology as it's been thought that ribosomes—which are sites of protein synthesis in the cell—drive cell growth rates, but our work suggests that something else may be happening in TB bacteria that raises new questions about its growth control."

In addition to reporting that there is extensive variation in growth behaviors among the individual bacterial cells, the team discovered another new growth behavior of TB bacteria: they can also begin growing from either end after being born. This was unexpected as related bacteria only start growing from the end opposite of where they pinched off their mother cell at division.

Advertisement

Together, the observations reveal that TB microbes use alternative strategies to increase variability among their offspring, challenging previous assumptions based on faster-growing and more uniform model organisms. Aldridge says the study will help her lab and other research teams better understand and exploit these mechanisms for treatment purposes.

"A lot of basic microbiology research is done in fast-growing model organisms, and while they're models for a reason, that doesn't make them representatives of other types of bacteria," said Aldridge. "There's an enormous diversity of life that we're not studying at the fundamental level and this work demonstrates why we need to study the pathogens themselves."

Advertisement

Reference:
  • Single-cell imaging of the Mycobacterium tuberculosis cell cycle reveals linear and heterogenous growth - (https://www.Nature.Com/articles/s41564-024-01846-z)
  • Source-Eurekalert

    Tuberculosis: What It Is And How AI Tech Could Change Diagnosis

    Tuberculosis (TB) is a contagious bacterial infection that typically affects the lungs but can impact other organs. Caused by Mycobacterium tuberculosis, TB spreads through the air when someone with active TB coughs or sneezes. The disease is especially dangerous for individuals with weakened immune systems and is a significant health threat worldwide, particularly in low- and middle-income countries.Diagnosing TB involves a range of tests, each with its strengths and limitations:Tuberculin Skin Test (TST): This test injects a small amount of TB protein under the skin. If the person has been exposed to TB, a reaction may occur. However, TST does not differentiate between active and latent TB and can produce false positives, especially in those vaccinated with the BCG vaccine.Chest X-Ray: X-ray images can reveal abnormalities in the lungs caused by TB, though they are not definitive as other lung conditions can look similar.Sputum Smear Microscopy: A sample of sputum (mucus) from the lungs is examined under a microscope for TB bacteria. This method is widely used but may not detect early-stage or non-pulmonary TB.Molecular Tests (PCR): Polymerase Chain Reaction (PCR) tests identify TB DNA in samples, offering a faster and more accurate diagnosis. PCR requires specialized equipment, which may not be accessible in all healthcare settings. Interferon-Gamma Release Assays (IGRA): Blood tests like QuantiFERON-TB Gold check for immune response to TB bacteria, mainly for latent TB detection.New AI technology in TB diagnosisA new diagnostic tool developed by Indian-origin American researchers Manaswini Davuluri and Venkata Sai Teja Yarlagadda uses artificial intelligence (AI) to improve TB diagnosis. Their AI-powered device reportedly uses a convolutional neural network (CNN) model to analyze chest X-rays, providing quicker and more accurate results."AI can reshape TB diagnosis by achieving a precision level in imaging analysis that's challenging to achieve manually. This could benefit areas with limited resources by offering reliable TB diagnostics, reducing transmission rates, and improving patient outcomes," Davuluri said.




    Comments

    Popular posts from this blog

    Manual on meat inspection for developing countries

    Rash behind ear: Causes, other symptoms, and treatment - Medical News Today

    Freddie Mercury's haunting last picture before tragic death from Aids - Irish Mirror